

# 城市樹木及草坪淨化空氣污染 及固碳之研究

Studies on the Role of Urban Trees and Turfgrass for  
Air-cleaning and Carbon Fixation

En-Jang Sun and Yuan Chang

Research Center for Plant Medicine, National Taiwan University

孫岩章、張 元

台灣大學 植物醫學研究中心

Email : eirl5622@ntu.edu.tw

## Part I.

# 城市樹木淨化空氣污染及環境 保護之研究

The Role of Urban Trees for Air-cleaning and  
Environmental Protection

## Part. II

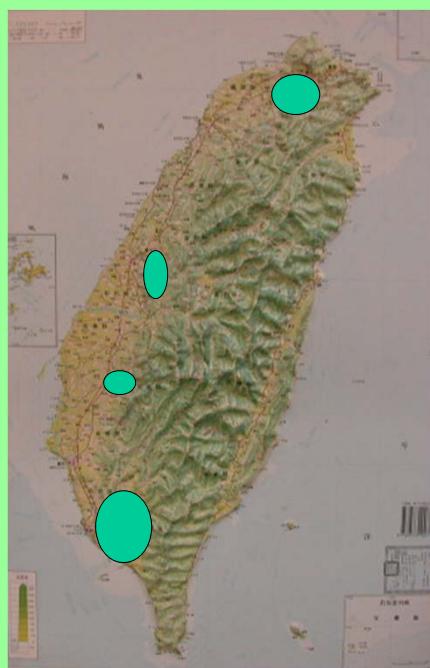
# 草坪淨化空氣污染及 固碳之研究

The Role of Turfgrass for Air-cleaning  
and Carbon Fixation

## Urban Air Quality in Taiwan



Urban greening is more and more important




All green vegetation are proven to be able to absorb various kinds of toxic, active air pollutants



## Most important outdoor air pollutants in Taiwan

|                      | Pullutant                                            | Distribution                |
|----------------------|------------------------------------------------------|-----------------------------|
| Primary pollutants   | Fluorides                                            | Around industrial areas     |
|                      | Chlorine                                             | Around industrial areas     |
|                      | Nitrogen oxides                                      | Urban and suburbs           |
|                      | Particles                                            | Local areas or whole island |
|                      | HCl, C <sub>2</sub> H <sub>4</sub> , NH <sub>3</sub> | Around industrial areas     |
| Secondary pollutants | Ozone                                                | Urban and suburbs           |
|                      | PAN                                                  | Urban and suburbs           |
|                      | Acid rain                                            | Whole areas                 |

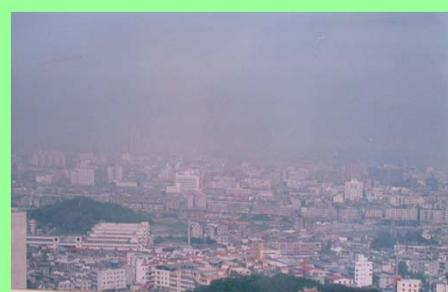


Four big areas were found to be affected by PAN and ozone in Taiwan at present time

## Major indoor air pollutants

- Gases : HCHO (Formaldehyde), CO<sub>2</sub> , SO<sub>2</sub>, NO, NO<sub>2</sub>, Cl<sub>2</sub>, HCl, NH<sub>3</sub>, H<sub>2</sub>S, C<sub>6</sub>H<sub>6</sub> (Benzene)
- Particles : Dust, suspended particles, PM10, PM2.5 = Respirable suspended particles, bioaerosol.

Indoor air quality standards proposed by Taiwan EPA


| 項目 (item)                                                | 建議值 (proposed level) | 單位 (unit)     |                                           |
|----------------------------------------------------------|----------------------|---------------|-------------------------------------------|
| 二氧化氮 (CO <sub>2</sub> )                                  | 8小時值 (8 hr mean)     | 第1類 (Group 1) | 600<br>ppm (體積濃度百萬分之一)                    |
|                                                          |                      | 第2類(G2)       | 1000                                      |
| 一氧化碳 (CO)                                                | 8小時值 (8 hr mean)     | 第1類(G1)       | 2<br>ppm (體積濃度百萬分之一)                      |
|                                                          |                      | 第2類(G2)       | 9                                         |
| 甲醛 (HCHO)                                                | 1小時值/11小時值(1h/11h)   |               | 0.13 0.1<br>ppm (體積濃度百萬分之一)               |
| 總揮發性有機化合物 (TVOC)                                         | 1小時值(1h)             |               | 3<br>ppm (體積濃度百萬分之一)                      |
| 細菌(Bacteria)                                             | 最高值(max)             | 第1類(G1)       | 500<br>CFU/m <sup>3</sup> (菌落數/立方公尺)      |
|                                                          |                      | 第2類(G2)       | 1000                                      |
| 真菌(Fungi)                                                | 最高值(max)             | 第2類(G2)       | 1<br>CFU/m <sup>3</sup> (菌落數/立方公尺)        |
| 粒徑小於等於10微米 ( $\mu\text{m}$ ) 之懸浮微粒 (PM <sub>10</sub> )   | 24小時值(24h)           | 第1類(G1)       | 60<br>$\mu\text{g}/\text{m}^3$ (微克/立方公尺)  |
|                                                          |                      | 第2類(G2)       | 150                                       |
| 粒徑小於等於2.5微米 ( $\mu\text{m}$ ) 之懸浮微粒 (PM <sub>2.5</sub> ) | 24小時值(24h)           |               | 100<br>$\mu\text{g}/\text{m}^3$ (微克/立方公尺) |
| 臭氧 (O <sub>3</sub> )                                     | 8小時值(8 hr mean)      | 第1類(G1)       | 0.03<br>ppm (體積濃度百萬分之一)                   |
|                                                          |                      | 第2類(G2)       | 0.05                                      |
| 溫度(Temperature)                                          | 1小時值(1h)             | 第1類(G1)       | 15至28<br>°C (攝氏)                          |

## Using Green Plants to Uptake Indoor and Outdoor Air Pollutants

- National Aeronautics and Space Administration (NASA), had ever supported many researches on this topic.
- Wolverton & Wolverton ( 1992) published the 「Interior Plants and Their Role in Indoor Air Quality: An Review」, proving that **indoor plants can remove the formaldehyde (HCHO) etc.**

## Using Green Plants to Uptake Air Pollutants in Taiwan since 1988

- Green plants can absorb air pollutants, including ozone, nitrogen dioxide, sulfur dioxide, ammonia and formaldehyde (Elkley et al. 1982, Hill 1971).
- The **deposition velocity** concept by Hanson and Lindberg (1991) is generally accepted for evaluating the uptake efficiency of plants and other receptors.
- We have tried to estimate the **pollutant uptake rates of large trees** in the Taipei area of Taiwan **since 1988**. Hope to select species with the highest pollutant uptake rate and the lowest isoprene-emitting rate for growing in the urban and rural areas (Sun and Ho 2005).



In 1988 we started the studies on “Sorption of ozone, SO<sub>2</sub> and NO<sub>2</sub> by green crop plants” at Raleigh, North Carolina, using CSTR, and published the first scientific paper in Taiwan

**En-Jang Sun**

was then a Senior Specialist,  
Taiwan Environmental Protection Administration,

The measuring facility is CSTR  
(Continuously stirred tank reactor)



Since 1995 Taiwan Environmental Protection Administration have supported the projects every year on measuring the air-cleaning efficacy by green plants in Taiwan

### **MEASURING THE DEPOSITION VELOCITY OF NITROGEN DIOXIDE ON TREES IN TAIWAN**

Presented in 14th IUAPPA World Congress, 2007 at the Brisbane Convention and Exhibition Centre

<sup>1</sup>En-Jang Sun, <sup>2</sup>Ya-Nan Wang, and <sup>3</sup>W. J. Swei

<sup>1</sup> Department of Plant Pathology and Microbiology; <sup>2</sup> Department of Forestry, National Taiwan University, Taipei, Taiwan

<sup>3</sup> Taiwan Environmental Protection Administration, Taipei, 106, Taiwan.

### **Instrument and Measurement of Pollutant Uptake**



- There were many methods for measuring the pollutant uptake rates.
- (a) the continuously stirred tank reactor,
- (b) the field eddy coefficient measurement,
- (c) the open-top chamber
- (d) wind tunnel method,
- (e) the close chamber (or cuvette) method

We have six CSTRs in NTU Greenhouse



Air pollution research greenhouse



We need various kinds of measuring instruments, like this PAN (Left) and NOx monitor (right)



The SO<sub>2</sub> monitor



The close chamber (or cuvette) method for  
Measuring Pollutant Uptake



A Special Branch Enclosure Chamber  
for Measuring Pollutant Uptake



A PP branch enclosure chamber was recently developed for measuring gas uptake by pot plants at higher efficiency



Benzene detector

## Calculation of Deposition Velocity (Vd) of Every Gas against Every Vegetation

### The Example for Ozone

The concentration change in each experiment was calculated, adjusted by the blank change value, and converted to deposition velocity by the following equation:

- $Vd = \{ [O3_{cp}] - [O3_{cb}] \} / [O3_{co}] \times S \div A \div t$
- Where **Vd** is the deposition velocity (mm/sec).
- $[O3_{cp}]$  is the O3 concentration change when the grasses are enclosed (ppb).
- $[O3_{cb}]$  is the blank O3 concentration change (ppb).
- $[O3_{co}]$  is the O3 concentration at the starting point, or time 0 (ppb).
- **S**: chamber volume (mm<sup>3</sup>).
- **A**: total grass area (mm<sup>2</sup>).
- **t**: the elapsed time (s).

## Procedure for NO<sub>2</sub> uptake measurement

- A branch enclosure chamber was designed for the uptake rate measurements (Sun and Ho 2005). A cylindrical plastic frame was enclosed by a clear 45-L polypropylene bag (Figure 1).
- The diameter of the cylindrical chamber was 36 cm and the length was 42 cm.
- A small electrical fan driven by a dry battery was installed at the top centre of the chamber to circulate the gases in the chamber.



The branch enclosure chamber for fast screening of high NO<sub>2</sub> uptake trees

## Procedure for NO<sub>2</sub> uptake measurement 2

- The NO<sub>2</sub> gas was produced from the reaction of nitric acid with coffee powder in a NO<sub>2</sub> generator. Before measurements, the trees, grown in 36 cm pots, were moved into a well-ventilated greenhouse with full sunlight.
- Healthy upper branches were enclosed within the bag and the bottom of the bag was tied tightly with a plastic wire to keep the chamber in a cylindrical shape.
- The NO<sub>2</sub>-laden air was immediately introduced into the chamber from the bottom seal around the stem for about 1-2 minutes to raise the NO<sub>2</sub> concentration to 200-400 ppb.



The branch enclosure chamber for fast screening of high NO<sub>2</sub> uptake trees

## Measuring NO<sub>2</sub> uptake rates of large trees

- Three species of common tree in the campus of National Taiwan University were selected for this study: a camphor tree aged 10 years, a Formosan michelia tree aged over 30 years, and a rosewood tree aged over 30 years.
- To measure the NO<sub>2</sub> uptake rate of the large trees, an access platform was used to hoist the technician and chamber to the top of the tree (Figure 2).



Figure 2. Technician with the chamber hoisted to the branches selected for Vd measurements.

## Annual NO<sub>2</sub> uptake rate of large trees

- When the uptake rates of a branch were obtained, the total uptake rate of an adult tree was estimated by the following equation.
- $$\text{Total uptake} = Vd_{avg} \times C_{avg} \times \text{total leaf area} \times \text{conversion constant}$$
- Where  $Vd_{avg}$  is the average Vd of NO<sub>2</sub> of the tree species over a whole year and is based on measured or modelled data;
- $C_{avg}$  is the average ambient concentration of NO<sub>2</sub> over a whole year and is based on monitored data;
- The total leaf area is the mean of total leaf areas over a whole year or four seasons.
- The total leaf area of a large tree was estimated by determining the leaf area index (leaf area per unit ground area) for each tree with a plant canopy analyser (Licor LAI-2000) (Peper and McPherson 1998). The projected crown area was then used to determine the total leaf area.

## NO<sub>2</sub> uptake rates of 3-year-old plants

- Table 1 presents a summary of the uptake studies. NO<sub>2</sub> uptake rates of 3-year-old seedlings of three tree species were compared.
- Camphor tree (*Cinnamomum camphora*) showed a relatively high mean deposition velocity but the variation was large.
- On the other hand, Formosan michelia (*Michelia compressa*) leaves had a low mean and less variable deposition velocity and rosewood (*Pterocarpus indicus*) showed a high and relatively uniform deposition velocity.

Table 1. Deposition velocity of NO<sub>2</sub> from branch chambers

| Species                         | Age (yrs) | Attribute    | Sample size | Leaf area cm <sup>2</sup> | V <sub>d</sub> | V <sub>d</sub> s.d. | V <sub>y</sub> /V <sub>o</sub> |
|---------------------------------|-----------|--------------|-------------|---------------------------|----------------|---------------------|--------------------------------|
| <i>Cinnamomum camphora</i> 檉樹   | 3         |              | 3           | 2590                      | 0.8            | 0.7                 | 1.98 n.s.                      |
|                                 | 10        | upper branch | 3           | 6730                      | 0.44           | 0.05                |                                |
|                                 | 10        | lower branch | 3           | 2043                      | 0.37           | 0.06                |                                |
| <i>Michelia compressa</i> 烏心石   | 3         |              | 3           | 3100                      | 0.54           | 0.18                | 18.0**                         |
|                                 | 30        |              | 3           | 3561                      | 0.03           | 0.02                |                                |
| <i>Pterocarpus indicus</i> 印度紫檀 | 3         |              | 3           | 1572                      | 1.11           | 0.29                | 7.4**                          |
|                                 | 30        |              | 3           | 6730                      | 0.15           | 0.09                |                                |

Vd, Mean deposition velocity of NO<sub>2</sub> (mm/s); Vd s.d., standard deviation of deposition velocity; Vy and Vo, deposition velocities of young and old leaves respectively; n.s., not significant, \*\*, P<0.01.

## NO<sub>2</sub> uptake rates of large trees

- The measurements of NO<sub>2</sub> uptake rate of big trees were conducted in the summer of 2006, using the access platform and branch chamber.
- Branches in the upper and lower portions of the crown of a 10-year-old camphor(*Cinnamomum camphora*) tree were examined.
- The results in Table 1 show that there was a small and statistically non-significant difference in NO<sub>2</sub> deposition velocity between these two positions in the crown. This means that it is reasonable to assume that deposition velocity is uniform throughout the crown, at least in camphor trees.

## NO<sub>2</sub> uptake rates of large trees 2

- The results of the 30-year-old Formosan michelia (*Michelia compressa*) and rosewood (*Pterocarpus indicus*) trees are also presented in Table 1.
- In these species, the old leaves showed deposition velocities that were significantly lower than those in 3-year-old seedlings.

## NO<sub>2</sub> uptake rates of large trees 3

- On a summer morning, old trees of camphor, Formosan michelia, and rose wood, absorbed NO<sub>2</sub> at only 51, 6 and 14%, respectively, of the rates observed in 3-year-old trees.
- One branch of rosewood was infested with leaf hopper insects and the uptake rate was reduced to 1/10 of the healthy branches. This contributed to the large standard deviation for 30-year-old rosewood in Table 1.
- It also implies that an unhealthy plant is not as useful as a healthy one for removing pollutants from the atmosphere.

## Screening common tree species for high NO<sub>2</sub> uptake

- In 2004, 20 tree species were screened for their NO<sub>2</sub> uptake rates with the bag branch chamber method. The results are shown in Table 2.
- From Table 2, we found that 6 among 20 popular tree species, are high NO<sub>2</sub> absorbers, with deposition velocities greater than 0.50 mm/s.
- The highest was Chinese pistache (*Pistacia chinensis*), followed in decreasing order by China berry (*Melia azedarach*), *Terminalia boivinii*, Taiwan zelkova (*Zelkova serrata*), Ceylon ardisia (*Ardisia squamulosa*), and rose wood (*Pterocarpus indicus*).

Table 2. NO<sub>2</sub> uptake rate of 20 tree species in Taiwan as measured by the branch enclosure method.

| Order | Scientific name                | Common name              | Leaf area (cm <sup>2</sup> ) | NO <sub>2</sub> Deposition velocity (mm/s) |
|-------|--------------------------------|--------------------------|------------------------------|--------------------------------------------|
| 01    | <i>Bischofia javanica</i>      | Red cedar                | 3240                         | 0.28                                       |
| 02    | <i>Cinnamomum camphora</i>     | Camphor樟樹                | 5085                         | 0.19                                       |
| 03    | <i>Michelia compressa</i>      | Formosan michelia烏心石     | 5061                         | 0.12                                       |
| 04    | <i>Swietenia macrophylla</i>   | Honduras mahogany大葉桃花心木  | 6279                         | 0.09                                       |
| 05    | <i>Pterocarpus indicus</i>     | Rose wood印度紫檀            | 1638                         | 0.56                                       |
| 06    | <i>Terminalia boivinii</i>     |                          | 2058                         | 0.94                                       |
| 07    | <i>Zelkova serrata</i>         | Taiwan zelkova台灣櫟        | 1595                         | 0.85                                       |
| 08    | <i>Melia azedarach</i>         | China berry苦楝            | 2160                         | 0.98                                       |
| 09    | <i>Pistacia chinensis</i>      | Chinese pistache黃連木      | 903                          | 2.03                                       |
| 10    | <i>Acacia confusa</i>          | Taiwan acacia相思樹         | 2604                         | 0.47                                       |
| 11    | <i>Pongamia pinnata</i>        | Poongaoil水黃皮             | 3132                         | 0.29                                       |
| 12    | <i>Cassia fistula</i>          | Golden shower阿勃勒         | 4136                         | 0.21                                       |
| 13    | <i>Elaeocarpus serratus</i>    | Celon olive錫蘭橄欖          | 4292                         | 0.23                                       |
| 14    | <i>Podocarpus nagi</i>         | Nagi podocarp竹柏          | 1342                         | 0.20                                       |
| 15    | <i>Podocarpus macrophyllus</i> | Yew podocarp羅漢松          | 1424                         | 0.13                                       |
| 16    | <i>Ardisia squamulosa</i>      | Ceylon ardisia春不老        | 1904                         | 0.69                                       |
| 17    | <i>Cinnamomum micranthum</i>   | Stout camphor牛樟          | 2425                         | 0.14                                       |
| 18    | <i>Calocedrus formosana</i>    | Taiwan incense cedar台灣肖楠 | 4047                         | 0.41                                       |
| 19    | <i>Palaquium formosanum</i>    | Formosan nato大葉山欖        | 1379                         | 0.19                                       |
| 20    | <i>Calophyllum inophyllum</i>  | Indiapoou beautyleaf瓊崖海棠 | 756                          | 0.31                                       |

### Estimation of annual NO<sub>2</sub> uptake by large trees

- When the uptake rates of a branch had been obtained, the total and yearly uptake rate of an adult tree was estimated by calculation following the function described above.
- The total uptake rates of the three large trees described in Table 1 were estimated as shown in Table 3. These calculations suggest that one large camphor tree with a height of 10.5 m can remove 0.13 kg of NO<sub>2</sub> from the atmosphere per year.
- One hectare of camphor forest then will remove 39 kg of NO<sub>2</sub> from the air in one year.

## Estimation of annual NO<sub>2</sub> uptake by large trees 2

- A 30-yr old rosewood tree can take up 0.15 kg of NO<sub>2</sub> per tree per year although the deposition velocity of the old tree was only about 1/3 of the camphor tree.
- The greater leaf number of this species and their greater total leaf area play important roles in increasing the total absorption of NO<sub>2</sub>. For Formosan michelia, however, since the deposition velocity of the old tree is very low and the total leaf area is not much greater than the camphor tree, its performance is not good as the other two species. The old Formosan michelia tree can remove only 1/20 of the amount of NO<sub>2</sub> as compared with rosewood.

Table 3. Estimated total annual uptake of NO<sub>2</sub> by three large trees in Taiwan

| Tree name         | Age (yr) | Height (m) | Total leaf area (m <sup>2</sup> ) | Ambient mean [NO <sub>2</sub> ] <sup>a</sup> (ppb) | Daytime Vd <sub>(NO<sub>2</sub>)</sub> (mm/s) | Total uptake per day <sup>b</sup> (mg/day) | Total uptake per year <sup>c</sup> (kg/yr) | Total uptake per hectare year <sup>d</sup> (kg/ha) |
|-------------------|----------|------------|-----------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Camphor tree      | 10       | 10.5       | 412                               | 26                                                 | 0.41                                          | 358                                        | 0.13                                       | 39                                                 |
| Formosan michelia | 30       | 14         | 344                               | 26                                                 | 0.03                                          | 22                                         | 0.008                                      | 2.4                                                |
| Rose wood         | 30       | 12.5       | 1310                              | 26                                                 | 0.15                                          | 415                                        | 0.15                                       | 45                                                 |

<sup>a</sup>The mean NO<sub>2</sub> concentration was based on the monitoring data of Taiwan EPA Monitoring station located at Ku-Tin Elementary School.

<sup>b</sup>The total uptake per day was calculated by counting the daily mean Vd as 1/2 of daytime Vd.

<sup>c</sup>The yearly total uptake was on the basis with 365 days a year.

<sup>d</sup>The total uptake per hectare year is based on that there were 300 trees per hectare.

## Conclusion 1

- (1) The branch enclosure chamber performed very well in the  $\text{NO}_2$  uptake measurements. It is a fast and convenient method for measuring the pollutant uptake without causing environmental stresses to the plants.
- (2) Of 20 popular tree species tested, 6 are high  $\text{NO}_2$  absorbers, with deposition velocities over 0.50 mm/s.
- (3) One large camphor tree with a height of 10.5 m can remove 0.13 kg of toxic  $\text{NO}_2$  gas from the atmosphere per year. One hectare of camphor forest will clean out 39 kg of toxic  $\text{NO}_2$  gas from the air in one year.

## Conclusion 2

- (4) There is a highly significant difference between the young and old trees for the  $\text{NO}_2$  deposition velocities in Formosa michelia and rosewood, but not in camphor trees. In general, old trees had lower uptake rates for  $\text{NO}_2$  gas than young trees.
- (5) The species with higher uptake rates for air pollutants should be screened and selected in our society so that the reforestation unit can use them to remove more toxic  $\text{NO}_2$  gas as well as carbon dioxide.

## ACKNOWLEDGEMENT

This study was supported by grants from Taiwan Environmental Administration (Grant #EPA-95-FA14-03-A155). The author is also grateful to Dr. Sin-Ron Guo and National Taiwan University Farm for their kind supply of many important tree seedlings.



## Air-cleaning Ecosystem Tank Developed by NTU



Air-cleaning Ecosystem Tank on desktop



## Part. II

### 草坪淨化空氣污染及 固碳之研究

The Role of Turfgrass for Air-cleaning  
and Carbon Fixation

Does Turfgrass play the role of carbon fixation and air-cleaning ?



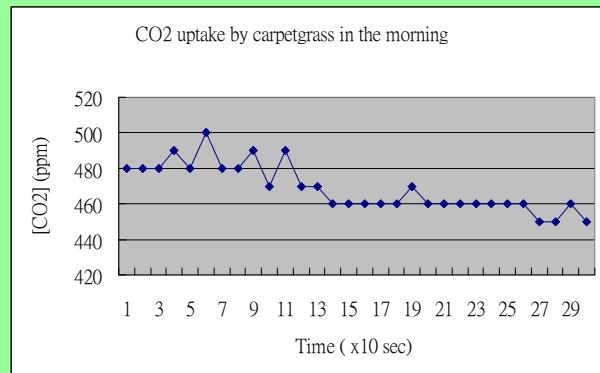
Using the smog chamber we can measure the uptake rates of CO<sub>2</sub>, ozone, NO<sub>2</sub> by four turfgrasses in NTU greenhouse



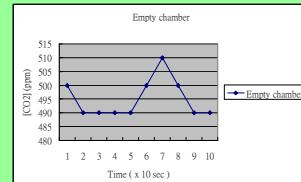
The CO<sub>2</sub>, ozone, and NO<sub>2</sub> are measured continuously by specific monitors



Eco-tech NO<sub>2</sub> monitor and  
Phillips Ozone monitor


Sibata IES-3000 CO<sub>2</sub> monitor




Four turfgrasses for test



## Results of carbon fixation by four turfgrasses



Carbon fixation rate can be calculated from concentration change subtracted with that in empty chamber



## Calculation

The concentration change in each experiment was calculated, adjusted by the blank change value, and converted to deposition velocity by the following equation:

- $Vd(\text{mm/s}) = \{ [\text{CO}_2_{\text{cp}}]/(t \times [\text{CO}_2_{\text{co}}]_{\text{cp}}) - [\text{CO}_2_{\text{cb}}]/(t \times [\text{CO}_2_{\text{co}}]_{\text{cb}}) \} \times S \div A$
- Where  $Vd$  is the deposition velocity (mm/sec).
- $[\text{CO}_2_{\text{cp}}]$  is the CO<sub>2</sub> concentration change when the grasses are enclosed (ppm).
- $[\text{CO}_2_{\text{cb}}]$  is the blank CO<sub>2</sub> concentration change (ppm).
- $[\text{CO}_2_{\text{co}}]$  is the CO<sub>2</sub> concentration at the starting point, or time 0 (ppm).
- $S$ : chamber volume (mm<sup>3</sup>).
- $A$ : total grass area (mm<sup>2</sup>).
- $t$  : the elapsed time (s).

## Results of carbon fixation by four turfgrasses

Table 1. Carbon fixation rates by four turfgrass species in various time and light intensity.

| Measuring time                              | 5/18 am   | 5/18 pm   | 5/25 am  | 5/25 pm  | 5/26 pm  | 5/29 am   | 5/19 night | 5/25 night |
|---------------------------------------------|-----------|-----------|----------|----------|----------|-----------|------------|------------|
| Light intensity                             | 10280 Lux | 30000 Lux | 5000 Lux | 5000 Lux | 7000 Lux | 17000 Lux | 3 Lux      | 0.3 Lux    |
| Vd-CO <sub>2</sub> of four turfgrass (mm/s) |           |           |          |          |          |           |            |            |
| Carpetgrass                                 | 2.4       | 2.3       | 1.5      | 0.03     | 0.66     | 3.3       | -0.72      | -0.094     |
| Centipedegrass                              | 0.44      | 1.2       | 1.1      | -0.27    | -0.47    | 2.1       | -1.1       | -1.2       |
| Korean velvet grass                         | 1.2       | 0.44      | 1.6      | -0.53    | -1.49    | 1.6       | -1.2       | -0.66      |
| Bermuda grass                               | 1.6       | 0.51      | 1.2      | -0.24    | -0.93    | 1.9       | -1.6       | -0.62      |

## Results of carbon fixation by four turfgrasses

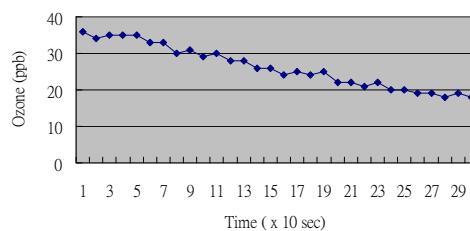
Table 2. Mean carbon fixation rates by four turfgrass species in various time.

| Grass               | Mean Vd-CO <sub>2</sub> |       |          |       |
|---------------------|-------------------------|-------|----------|-------|
|                     | am                      | pm    | day mean | night |
| Carpetgrass         | 2.4                     | 1.0   | 1.7      | -0.41 |
| Centipedegrass      | 1.2                     | 0.15  | 0.67     | -1.1  |
| Korean velvet grass | 1.5                     | -0.53 | 0.48     | -0.93 |
| Bermuda grass       | 1.6                     | -0.22 | 0.69     | -1.1  |

## Results of carbon fixation by four turfgrasses

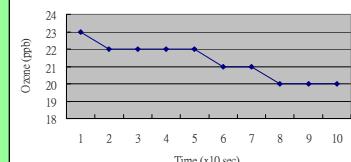
Table 3. Carbon fixation rates by four turfgrass species.

| Grass                  | Day<br>mean<br>Vd-CO <sub>2</sub> | Ambient<br>CO <sub>2</sub><br>concentra-<br>tion | Carbon<br>fixation<br>rates/<br>sec · ha | Carbon<br>fixation<br>rates/<br>day · ha | Carbon<br>fixation<br>rates/<br>year · ha |
|------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|
|                        | (mm/s)                            | (ppm)                                            | (g/s · ha)                               | (kg/d · ha)                              | (ton/y · ha)                              |
| Carpetgrass            | 1.7                               | 390                                              | 11.9                                     | 428                                      | 156                                       |
| Centipedegrass         | 0.67                              | 390                                              | 4.7                                      | 170                                      | 62                                        |
| Korean velvet<br>grass | 0.48                              | 390                                              | 3.3                                      | 121                                      | 44                                        |
| Bermuda<br>grass       | 0.69                              | 390                                              | 4.8                                      | 174                                      | 63                                        |


\*Carbon fixation rates / sec · ha = Vd-CO<sub>2</sub> × [CO<sub>2</sub>] × land area

\*Carbon fixation rates/day · ha = [Carbon fixation rates / sec · ha] × 3600 × 10(hr/day)

\*Carbon fixation rates/year · ha = [Carbon fixation rates / day · ha] × 365 (d/year)


## Results of ozone depletion or uptake by four turfgrasses

Ozone uptake by carpetgrass in the morning



Ozone uptake rate can be calculated from concentration change subtracted with that in empty chamber

Ozone uptake by empty smog chamber in the morning



# Calculation

The concentration change in each experiment was calculated, adjusted by the blank change value, and converted to deposition velocity by the following equation:

- $Vd(\text{mm/s}) = \{ [O_3]_{\text{cp}} / (t \times [O_3]_{\text{co}}) - [O_3]_{\text{cb}} / (t \times [O_3]_{\text{co}}) \} \times S / A$
- Where  $Vd$  is the deposition velocity (mm/sec).
- $[O_3]_{\text{cp}}$  is the  $O_3$  concentration change when the grasses are enclosed (ppb).
- $[O_3]_{\text{cb}}$  is the blank  $O_3$  concentration change (ppb).
- $[O_3]_{\text{co}}$  is the  $O_3$  concentration at the starting point, or time 0 (ppb).
- $S$ : chamber volume ( $\text{mm}^3$ ).
- $A$ : total grass area ( $\text{mm}^2$ ).
- $t$ : the elapsed time (s).

## Results of ozone depletion or uptake by four turfgrasses

Table 4. Atmospheric ozone uptake rates by four turfgrass species in various time and light intensity.

| Measuring time                    | 5/18 am   | 5/18 pm   | 5/25 am  | 5/25 pm  | 5/26 pm  | 5/29 am   | 5/19 night | 5/25 night |
|-----------------------------------|-----------|-----------|----------|----------|----------|-----------|------------|------------|
| Light intensity                   | 10280 Lux | 30000 Lux | 5000 Lux | 5000 Lux | 7000 Lux | 17000 Lux | 3 Lux      | 0.3 Lux    |
| $Vd-O_3$ of four turfgrass (mm/s) |           |           |          |          |          |           |            |            |
| Carpetgrass                       | 3.1       | 1.6       | 1.5      | 3.0      | 6.4      | 4.7       | 1.9        | 1.0        |
| Centipedegrass                    | 0.69      | -0.2      | 3.5      | 0.91     | 6.6      | 3.1       | -0.38      | 2.1        |
| Korean velvet grass               | 1.1       | 2.4       | 1.5      | 1.4      | 5.4      | 3.6       | -0.86      | 1.1        |
| Bermuda grass                     | 1.4       | 2.5       | 3.0      | 1.6      | 5.9      | 4.8       | -0.31      | -0.55      |

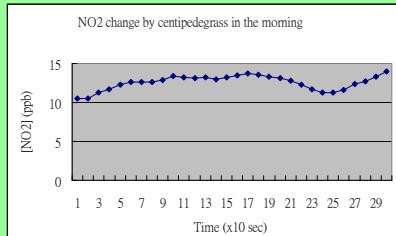
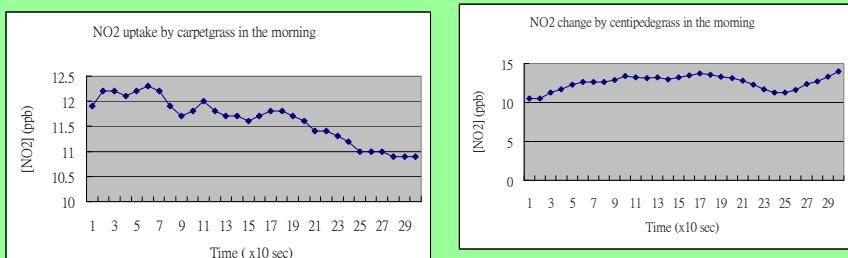
## Results of ozone depletion or uptake by four turfgrasses

Table 5. Mean ozone uptake rates by four turfgrass species in various time.

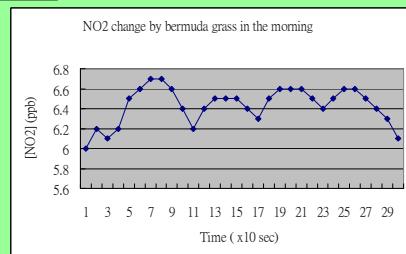
| Grass               | Mean Vd-O <sub>3</sub> |     |          |       |
|---------------------|------------------------|-----|----------|-------|
|                     | am                     | pm  | day mean | night |
| Carpetgrass         | 3.1                    | 3.7 | 3.4      | 1.5   |
| Centipedegrass      | 2.4                    | 2.4 | 2.4      | 0.86  |
| Korean velvet grass | 2.1                    | 3.1 | 2.6      | 0.12  |
| Bermuda grass       | 3.1                    | 3.3 | 3.2      | -0.43 |

## Results of ozone depletion or uptake by four turfgrasses

Table 6. Atmospheric ozone uptake rates by four turfgrass species.



| Grass               | Day mean Vd-O <sub>3</sub> | Ambient O <sub>3</sub> concentration | Ozone uptake rate / sec · ha | Ozone uptake rate / day · ha | Ozone uptake rate / year · ha |
|---------------------|----------------------------|--------------------------------------|------------------------------|------------------------------|-------------------------------|
|                     | (mm/s)                     | (ppb)                                | (mg/s · ha)                  | (g/d · ha)                   | (kg/y · ha)                   |
| Carpetgrass         | 3.4                        | 60                                   | 4.1                          | 175                          | 64                            |
| Centipedegrass      | 2.4                        | 60                                   | 2.9                          | 125                          | 45                            |
| Korean velvet grass | 2.6                        | 60                                   | 3.1                          | 133                          | 48                            |
| Bermuda grass       | 3.2                        | 60                                   | 3.9                          | 169                          | 61                            |

\*Ozone uptake rate / sec · ha = Vd-O<sub>3</sub> × [O<sub>3</sub>] × land area


\*Ozone uptake rate / day · ha = [Ozone uptake rate / sec · ha] × 3600 × 12(hr/day)

\*Ozone uptake rate / year · ha = [Ozone uptake rate / day · ha] × 365 (d/year)

## Results of $\text{NO}_2$ depletion or uptake by four turfgrasses



$\text{NO}_2$  seemed to be absorbed or emitted by grasses or habitat



## Results of $\text{NO}_2$ depletion or uptake by four turfgrasses

Table 7. Atmospheric  $\text{NO}_2$  uptake rates by four turfgrass species in various time and light intensity.

| Measuring time                             | 5/18 am   | 5/18 pm   | 5/25 am  | 5/25 pm  | 5/26 pm  | 5/29 am   | 5/19 night | 5/25 night |
|--------------------------------------------|-----------|-----------|----------|----------|----------|-----------|------------|------------|
| Light intensity                            | 10280 Lux | 30000 Lux | 5000 Lux | 5000 Lux | 7000 Lux | 17000 Lux | 3 Lux      | 0.3 Lux    |
| Vd- $\text{NO}_2$ of four turfgrass (mm/s) |           |           |          |          |          |           |            |            |
| Carpetgrass                                | 1.7       | -1.5      | -0.5     | 1.5      | -0.73    | -10.3     | 9.7        | 0.91       |
| Centipedegrass                             | -3.9      | -2.3      | 5.6      | 5.9      | 8.0      | -7.1      | 8.1        | -5.7       |
| Korean velvet grass                        | 5.1       | -4.6      | -1.5     | 0        | 0.2      | -3.5      | 13.8       | 3.9        |
| Bermuda grass                              | -2.0      | -2.0      | -4.8     | 1.0      | 5.9      | -0.48     | 7.2        | -6.9       |

## Results of $\text{NO}_2$ depletion or uptake by four turfgrasses

Table 8. Mean  $\text{NO}_2$  uptake rates by four turfgrass species in various time.

| Grass               | Mean Vd- $\text{NO}_2$ |       |          |       |
|---------------------|------------------------|-------|----------|-------|
|                     | am                     | pm    | day mean | night |
| Carpetgrass         | -3.0                   | -0.24 | -1.6     | 5.3   |
| Centipedegrass      | -1.8                   | 3.9   | 1.1      | 1.2   |
| Korean velvet grass | 0.03                   | -1.5  | -0.74    | 8.8   |
| Bermuda grass       | -2.4                   | 1.6   | -0.4     | 0.15  |

## Conclusions

1. All four turfgrass species, including carpetgrass, centipedegrass, Korean velvet grass, and Bermuda grass, can fix  $\text{CO}_2$  at certain uptake rates. The uptake rates are different among the species.
2. All four turfgrass species can deplete or clean the ozone pollutant at certain uptake rates. The uptake rates are different among the species.
3. All four turfgrass species may also uptake  $\text{NO}_2$  and other toxic gases including  $\text{SO}_2$ , ammonia and etc.
4. The turfgrass does play the role of carbon fixation and air-cleaning simultaneously.

## Suggestion

Only the healthy turfgrass can fix CO<sub>2</sub> and remove air pollutants at higher uptake rates.  
The uptake rates are different among the species and healthy situations.



Thanks a lot for my classmate and best friend

Miss Sy-Yeu Chern (陳思羽 )



敬祝健康 並請指教

