

Disease Control & Common Problems
Unsolved Mysteries
& New Varieties

Practical Turf Management II
Hong Kong
June 11, 2011

This Presentation has been
Created by:
Michael J. Healy
Healy&Associates
&
Presented by:
Lee Sellars
Premierturf Services

Curvularia Blight

This disease is a problem when weather conditions are hot and wet with ideal temperatures between 27°-35° C.

There are two stages of the disease.
Mycelial Growth: During cool temperatures.
Spore Production: During hot/wet periods.

Curvularia Blight

Hosts: Zoysiagrass, Bermudagrass, Tall Fescue, Kentucky Bluegrass, Bentgrass

Visual Diagnoses: Spot, blighting, yellowing

Curvularia Blight Recommended Treatments

- Keep plants healthy, well watered & well fertilized.
- Apply Iprodione with soluble fertilizer, if possible.
- Keep mowing heights above 3.5 mm.
- Keep high levels of Manganese & Copper in the plant.
- Treat throughout the season during stress.
(especially following heavy rains)
- Do not irrigate after fungicide application.
- Apply fungicide prior to verticutting, aerification or other mechanical programs.

Pythium Root Disease

This disease becomes active when weather conditions are hot and humid with ideal temperatures above 35° C and humidity above 90%.

Excessive Nitrogen (N) fertility and Calcium (Ca) deficiency can increase severity and incidence.

Pythium Root Disease

Hosts: Most all warm season turfgrass

Visual Diagnoses:

- Circular, bluish to reddish brown patches 2.5-15 cm across that appear quickly and enlarge rapidly.
- Water-soaked, slimy leaves.
- Fluffy, grayish white, cottony fungal threads (mycelia) present in the early morning.
- Infected leaves become tan to brown, shrivel and mat when dry.

2010/04/12 08:19

2010/03/08 08:04

Pythium Root Disease Cultural Management

- Irrigation is an important cultural practice to monitor.
- Provide good surface and subsurface drainage.
- Raise the mowing height.
- Thatch should be removed if greater than 0.6-1.2 cm.
- A balanced system of turfgrass nutrition is also key to controlling Pythium.
- Excessive fertility during hot months, particularly Nitrogen, can increase disease pressure.
- Levels of Nitrogen applied to turf should be monitored and monthly applications of 25 kg of Nitrogen / Ha (0.5 lbs/1000 sq. ft.).

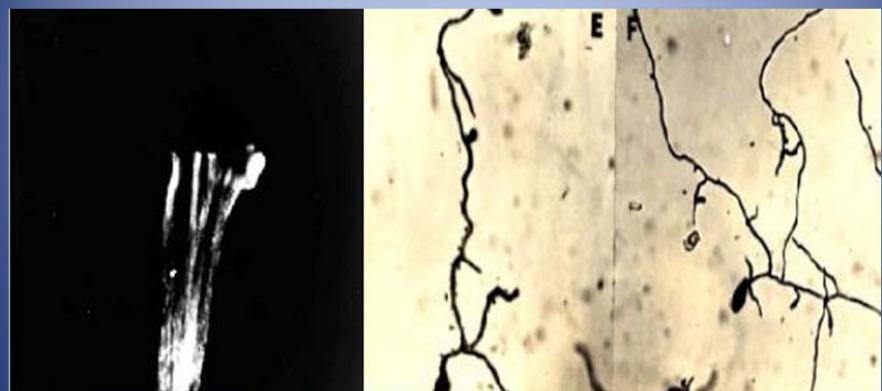
Pythium Root Disease Cultural Management

- Avoid Calcium deficiency and maintain a slightly acidic soil pH.
- Promote good air flow by pruning trees to promote light penetration and increase air movement.
- When mowing avoid areas of wet turf when the temperature is above 21°C. This will help minimize the spread of the pathogen.
- Alleviate soil compaction in order to improve turfgrass root growth.

Pythium Root Disease Recommended Treatments

- Institute a preventative fungicide program in areas that have a history of Pythium.
- The repeated use of some Pythium fungicides, particularly Metalaxyl may select for resistant populations.
- Fungicides from different chemical groups should be altered or combined in a control program to limit development of resistant populations.
- Alternating between systemic and contact fungicides may delay resistance development.

White deposits observed on
bermudagrass leaf tips on the
morning after nitrogen app.


From previous research
I know that those
white deposits are
pure L-glutamine,
an amino acid
produced by the plant

Why and How was the
L-Glutamine Produced?

L-Glutamine was produced within the plant as a result of its intake of Ammonium Ions, which can be toxic to the plant if in too high a concentration

Ammonium Ion + glutamic acid
=

L-Glutamine
which is removed from the
plants
in guttation fluid

Left: L-Glutamine deposit on a leaf tip

Center: Fungal hypha development in pure water

Right: Fungal hypha development, forming many infection structures, in a weak solution of L-Glutamine

So now we have a potential link
between a type of nitrogen
fertilizer and increased
pathogenicity of various fungi
associated with turfgrasses-what
should you do?

Do you eliminate the use of ammonium (or Urea) based sources of nitrogen

Absolutely NOT!

Ammonium (and Urea) based Nitrogen fertilizers are commonly used, without ill effects- but,

If you begin to see a connection between disease outbreaks and nitrogen application, remember this possible link.

Is there a toxin being produced in your irrigation pond that can adversely affect turf quality?

The Toxin, Microcystin toxin, is produced by the blue-green algae (Cyano-bacterium) *Microcystis*

It is not only toxic to humans and animals, but has been proven to be toxic to plants.

Typical algal blooms

- The toxin is commonly found in golf course irrigation ponds-often at very low levels
- For unknown reasons, the algae capable of producing the toxin turn toxin production on and off.
- Keeping the algae from entering your irrigation pump induction point is the best solution.

Should you have concern for this toxin?

If you have a disease-like or disease outbreak that can not be controlled, and you have an obvious algal bloom in your irrigation pond- then testing for microcystin toxin should be considered.

Can you see the problem???

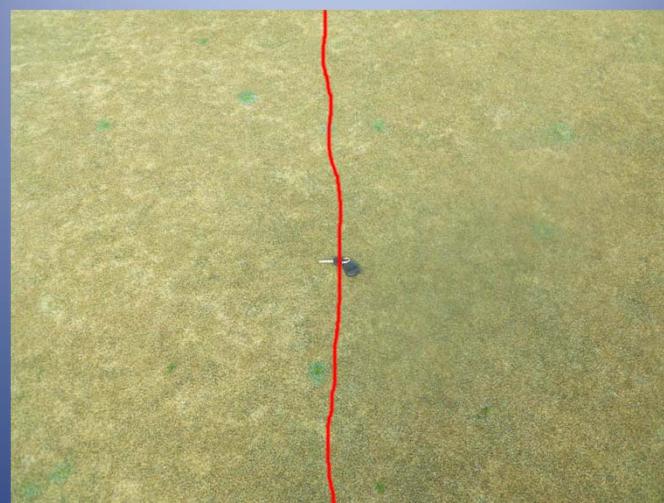
The greens on this course are 3 years old- and are Sealsle Supreme Seashore Paspalum.

This is an extremely well maintained golf course, hosting two major tournaments per year

Only a turfgrass manager would see the “symptom”!

- The “symptom” is scattered throughout most of the greens, in various sizes and shapes.
- Is it the result of some sort of spot treatment?
- Is it the result of an off-type-possible contamination?

- Or is it some sort of disease?
- Spot treatment problem was immediately ruled out- Off-typing/contamination- very unlikely- but can be confirmed/rejected through genetic testing


Some sort of disease? Most likely
The course uses three different
contact fungicides on a 1 week
rotation schedule, but this problem
could call for a systemic fungicide-
one of the strobilurins.
So either by diagnosis, or spot
application of strobilurin-to test
disease hypothesis.

NON CHEMICAL CONTROL
OF A
DISEASE

POSSIBLE?

MiniRing on Tifeagle-fall disease
Most likely caused by a
Rhizoctonia

The nonchemical treatment-2 months

The nonchemical treatment at post
4 months

The treatment? An alfalfa-based
compost- 620 gm/meter sq., spiked
and then watered in.

- The green had to be closed for 3 days because of watering and other considerations-not practical
- Evaluating an every 2 month application at 95 gms per sq. meter
- Will begin evaluation of a “compost tea”, liquid formulation later this year.

NEW VARIETIES!

**FIRST,
THREE NEW BERMUDAGRASSES-
CELEBRATION
PATRIOT
TIFGRAND**

CELEBRATION

- Developed in Australia
- Suitable- rough through tee
 - Excellent divot recovery
 - Excellent wear tolerance
 - Extremely aggressive
 - Blue-green color

Has become very popular in Central and South Florida along with other parts of USA

PATRIOT

- Developed at Oklahoma State University
 - Extremely cold tolerant
- Can be used on a rough through tee basis
- Being used on variety of sports field applications in transition zone-

PATRIOT

- Use zone where cool season grasses become too diseased in summer, but most warm season grasses are injured by cold winter weather

Used as far
north at S. New
York- Lat. 41 N

No till row conversion
from ryegrass to Patriot-+
10 weeks!

TIFGRAND

- Developed at U. of Georgia-Tifton
 - Extremely shade tolerant
- Mowing height down to 6.5 mm
 - One superintendent has taken mowing height down to 2.5mm, making a green (not advised)

Tifgrand used on a shaded tee box

Tifgrand (dark green strip)-verses GN-2 in shaded area

SEASHORE PASPALUM VARIETIES

**UGA 31- NOT YET RELEASED
ALSO A
NEW SEDED VARIETY ?
(DEVELOPER AND STATUS
UNKNOWN)**

MORE NEW VARIETY INFORMATION?

For varieties that have trade names, simply “Google” the trade name.

Also visit:

www.ntep.org

To all those attending this meeting. I have developed disease link summaries for what I believe are the 8 most important diseases.

Simply send me an e-mail (mjhealy@gulftel.com) and I will send you these summaries.

They are pdf files, and all links are “hot” links, click on any one and it will lead you to a specific web-based information source.

HEALY & ASSOCIATES
2020 Homewood Road
Elberta, Alabama 36530 USA
phone: 205 642 6444
cellphone: 205 804 1173
Skype: Seashore
E-mail: mjhealy@gulftel.com
Web site: www.seashoreagronomics.com
Web site: www.seashoreagronomics.com
Web site: www.seashoreagronomics.com

TURF DISEASE LINK DATABASE

ETRI

February 3, 2011

ETRI stands for “Ectoparasitic Root Infesting Fungi”, with “ectoparasitic” defined as (fungal) mycelium growing in a close web on the surface of associated roots. ETRI diseases go by a number of names: Spring Dead Spot, Bermudagrass Decline, Seashore Paspalum Decline, Take-All Root Root (TARR), Take-All Patch, Summer Patch, and more. The ETRI diseases can affect virtually all important sportspres. The most recent ETRI diagnosis database includes samples coming in from the SE USA are Bermudagrass Decline, Take-All Patch of St. Augustinegrass, and less commonly, Seashore Paspalum Decline. A number of putting green samples diagnosed as having Bermudagrass Decline were found on the newer ultradwarf varieties that had been planted on greens having had the older fescue or Trifoliate varieties. This is interesting because it is when the new variety had been “no-till” into the older turf variety after that turf had been removed via nonselective herbicide. I have placed a “*” by those links I find especially interesting.

Links:

<http://www.colb.agr.hort.com/images/Research%20Posters/Disease%20I.D.%20Program.pdf>

Above, summary of all diseases found during the year, including ETRI diseases. Joint effort of several turf scientists.

Above, an example of one of the link summaries-normally 2-3 pages in length.