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Reported global distribution of Phellinus noxius
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Wide host range of Phellinus noxius
~ 200 species from ~59 families

Example host species:

Araucariaceae - Araucaria cunninghamii (colonial pine)
Arecaceae - Elaeis guineensis (African oil palm)
Casuarinaceae - Casuarina equisetifolia (casuarina)
Clusiaceae - Calophyllum inophyllum (Alexandrian laurel); Garcinia mangostana (mangosteen)
Euphorbiaceae - Hevea brasiliensis (rubber)

Fabaceae - Acacia confuse; Bauhinia variegata (mountain ebony)

Meliaceae - Swietenia mahagoni (Cuban mahogany) o -
Lamiaceae - Tectona grandis (teak) . L as
Moraceae - Artocarpus altilis (breadfruit); Ficus microcarpa (Indian laurel free . e i
Podocarpaceae - Podocarpus macrophyllus (Long-leaf podocarpus) T Tt ARG R D il
Rubiaceae - Coffea (coffee)

Salicaceae - Salix babylonica (weeping willow)

Sapindaceae - Koelreuteria elegans; K. paniculata (golden rain tree)
Sterculiaceae - Theobroma cacao (cocoaq)

Theaceae - Camellia sinensis (teq)




Disease
cycle of

Phellinus
noxius

Disease center

Brown root roi

Brown

Ann, P.-J.; Chang, T.-T.; |
root rot |

Ko, W.-H. 2002.

Phellinus noxius brown root
rot of fruit and ornamental
frees in Taiwan.

Plant Disease 86: 820-826. ‘ From: Ann et al. 2002

A4

Diseased tissue
From previous
planting

/L BCISIdIOCCII'p 2

ores



Dispersal and survival of Phellinus noxius

Basidospores allow
some dispersal and
sexual recombination
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P. noxius can survive in dead roots for >10 years
(Chang 1996)

Vegetative
arthrocondia may

contribute to survival
and/or dispersal




Cultural characteristics of Phellinus noxius

(a)Colonies growing up from small
pieces of decayed wood.

(b)Colony morphology on potato
sucrose agar (PSA) with irregular
dark brown patches.

(c) Arthroconidia produced on PSA.

(d) Staghorn-like hyphae produced on
PSA.

From: Norio Sahashi



Genetic studies of Phellinus noxius

DNA-based diagnostics can identify P. noxius T

Phylogenetic studies can determine genetic groups within
P. noxius

Population genetic studies can determine gene flow and
movement of P. noxius

Genomic/transcriptomic studies provide insights into
pathogenicity genes and other genes of interest

Soil metagenomic/metatranscriptomic studies examine
soil levels of P. noxius, biocontrol agents, and other soil
microbes and their interactions with environmental factors




DNA sequence-based diagnostics are available to identify

Phellinus noxius from wood and soil samples
(Wang et al. 2016; Tzean et al. 2016)
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Molecular diagnosis of the brown root rot disease
agent Phellinus noxius on trees and in soil by rDNA
ITS analysis

Yong-Feng Wang"?, Han Meng”, Victor W. Gu® and Ji-Dong Gu”

! Guangdong Provincial Key Laboratory of Bio-control for the Forest Disease and Pest, Guangdong Academy of For-
estry, No. 233, Guangshan 1st Road, Guangzhou, People’s Republic of China

* Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong
Kong. Pokfulam Road. Hong Kong SAR, People’s Republic of China

* Chinese International School, 1 Hau Yuen Path, Braemar Hill, Hong Kong SAR, People’s Republic of China

Applied Environmental Biotechnology (2016) 1: 81-91.

microbial biotechnology

Development of oligonucleotide microarrays for
simultaneous multi-species identification of Phellinus
tree-pathogenic fungi

Yuh Tzean,’ Po-Yao Shu," Ruey+Fen Liou and resupinate, sessile, polyporoid fungi, several of which are
Shean-Shong Tzean* known to cause diseases such as stem rot, butt rot, root
Department of Plant Pathology and Microbiology, rot or tree wilt in a wide range of tree species (Van der
National Taiwan University, Tapei, Taiwan. Kamp, 1991; Castello ef al, 1995). These tree-patho-

genic fungi include some of the most aggressive wood-

Microbial Biotechnology (2016) 9: 235-244.



Population genetics: Examining mechanisms of Phellinus noxius
spread in Taiwan (Chung et al. 2015)
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Tree-to-tree spread of Phellinus noxius is largely clonal, but basidiospore-
derived spread has resulted in little differentiation among populations in
Taiwan (Chung et al. 2015)



Population genetics: Genetic divergence in Phellinus noxius by
islands observed in Japan (Akiba et al. 2015)
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Genetic Differentiation and Spatial Structure
of Phellinus noxius, the Causal Agent of
Brown Root Rot of Woody Plants in Japan

Mitsuteru Akiba'*, Yuko Ota', Isheng J. Tsai? Tsutomu Hattori', Norio Sahashi’,
Taisei Kikuchi®

PLOS ONE | DOI:10.1371 joumal pone.0141792

Phellinus noxius populations are genetically distinct on the Ryukyu and
Ogaswawara islands of Japan (Akiba et al. 2015).



Is Phellinus noxius the same in different
geographic regions?

Different genetic groups may

- display different ecological behavior;

* have different environmental requirements;
* pose invasive threats; and

* represent unknown risks from hybridization



1nus noxius
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Phellinus noxius isolate collections:

S T 151 total isolates
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Phellinus noxius isolates were established in culture
and DNA was extracted




Phellinus noxius DNA is amplified by PCR, sequenced, and analyzed
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Methods (cont.)

Sanger sequencing - 4 loci (3,846 total bp)
— Large Subunit (LSU; 26S)
— Internal Transcribed Spacer (ITS)
— Translation Elongation Factor 1-a (tefl)
— RNA Polymerase |l (rob2)

RADSeq genomic sequencing
— lllumina Hi-Seg - 125pb paired end

Haplotype statistics - DNAsp

Phylogenetics — Bayesian methods

Parsimony networks in TCS
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Jane Stewart et al.,
Colorado State University



All four loci showed signals of genetic diversity
within Phellinus noxius

Locus | Total bp |# haplotypes M nucleotide | Haplotype
diversity diversity

0.002 0.837
ITS 639 78 83 0.013 0.924
rob2 361 36 103 0.014 0.983
tefl 1077 60 33 0.008 0.923

Jane Stewart et al., in preparation



LSU phylogeny highlights phylogenetic diversity within Phellinus
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tefI-based
phylogeny of
Phellinus noxius:
Three distinct
clades
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Bioclimatic modeling to predict climatic niche
(potential distribution) for Phellinus noxius
and its genetic groups

* Precise location data (GPS points) are needed for
confirmed P. noxius (or different genetic groups)

« Global climate layer (grid) for diverse climate data

» Bioclimatic modeling program




GPS points for confirmed occurrences of Phellinus noxius or genetic groups
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Climate data are available from several sources:

Example sources for
climate data:

* WorldClim
http://www.worldclim.org/

 Daymet
http://www.daymet.org/

* Rehfeldt et al. (2006)
http://forest.moscowfsl.wsu.edu/
climate/index.html

Examples of climate data:

* Annual mean temp.

*  Annual precipitation

* Mean diurnal range

* Max. tfemp. warmest month
* Min. tfemp coldest month
« Mean temp. wettest gtr.
 Mean temp. driest gir.

* Precip. wettest gtr.

* Precip. driest gtr.

* Precip. wettest month

* Precip driest month
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Bioclimatic modelling, environmental niche modelling,

specles distribution modelling, or climate envelop modelling

Several different bioclimatic modelling programs are available.

We used Maximum Entropy or MaxEnt bioclimatic modelling,

because it performs well with
1) limited occurrence points; and

2) presence-only datal

Phellinus noxius isolates used

in this study
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MaxEnt bioclimatic prediction of potential distribution

(suitable climate space) for Phellinus noxius
and geographic areas at risk from invasion

based on all locations of all P. noxius genotypes:

-

¥ y 3 e =
- d
. Q4
Maxent Value alt ~«' “ : \ ¢
; 4 X . 7 f.“;. \,\ 3 "w L% -
‘ : 3 0 o
o ! el

1 Low

12.5

25
B 50
B 100 High

3.125 . - j
6.25 /j




MaxEnt bioclimatic predictions for different genetic groups of Phellinus noxius
Potential distribution and geographic areas at risk from invasion

All genetic groups Eastern Asia Australia/Pacific island
genetic group genetic group
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Preliminary conclusions from ongoing genetic
diversity study of Phellinus noxius

At least 3 distinct genetic groups of P. noxius are evident based

on tefl:
— Eastern Asia (Hong Kong, Malaysia, Taiwan, Japan)
— Austalia and Pacific islands (Guam, Saipan, Palau, Yap, Pohnpei,
Kosrae, Japan, Taiwan)
— American Samoa (separate from other population and least
diverse)

Each genetic group of P. noxius poses a distinct invasive treat

Some evidence for spread between geographic areas and
potential hybridization

Continved studies are needed to determine relationships of
isolates from Ceniral America and Africa



Other DNA/RNA sequence-based genetic studies

- Genome sequencing - sequencing of the entire genome provides
a wealth of information for interpreting biological relationships and
ecological functions

» Transcriptome sequencing — determines which genes are being
expressed under a specific environment, and provides insights into
pathogenicity mechanisms

Genomic and transcriptomic sequencing provide basic research
information toward understanding host-pathogen interactions that can
contiribute to the future development of management approaches.



Testing and developing management tools
for brown root rot

Methods are needed to evaluate the efficacy of
management methods, such as

* Minimizing inoculum (e.g., stump removal), and avoiding wounds;

* Fungicides or chemical freatments;

* Flooding;

° pH;

 Soil nutrients/fertilization;

* Understory cover crops;

- Biological control;

- Other manipulations of soil conditions to disfavor P. noxius and
favor biological; control agents;

- efc.




Metagenomics

“Environmental Genomics” ...study of genetic material recovered directly from
environmental samples

Marine microbial communities
« Global Ocean Sampling expedition

Medicine
« Human Microbiome Project; http://commonfund.nih.gov/hmp/

Biotechnology, Biofuel, Bioremediation

Soil metagenomes
- hitp://www.terragenome.org/




Utility of soil metagenomic tools for
brown root rot management

* Monitor the effect of diverse management practices on Phellinus
noxius (e.g., stumping, ureq, lime, flooding, cover crops, etc.)

* Investigate potential reasons that some planted species appear
to be more susceptible to P. noxius than naturally regenerated
native trees

- Develop novel management approaches by determining soil
conditions that suppress P. noxius and/or enhance biocontrol
agents (e.g., Trichoderma).



General steps for soil metagenomic studies

» Devise sampling design

» Collect environmental data (date, femperature, moisture,
plant coverage, host information, etc.)

« Collect soil samples (collect samples before freatment af
post-treatment intervals)

* Place ~ 2g of representative soil sample in preservation
solution for DNA/RNA (thoroughly mix soil samples or
aggregate samples )

« Conduct soil analyses (e.g., pH, bulk density, organic
matter, C, N, cations, texture, water-holding capacity,
etc.)




The utility of soil metagenomics depends on the
collection of environmental metadata

Examples of environmental data collection:
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Vegetation surveys

Tree hedlth assessments Installing soil temperature
and moisture probes



Collecting soil samples for soil analyses and
metagenomlc studies of the microbial populations

2 g soil subsample to
5 ml preservation buffer

Soil core | Weigh soil subsample Soil subsample in tubes
with preservation solution



Soil analyses (environmental data)

# Determine properties, e.g., pH, bulk density, organic matter,
C, N, cations, texture, water-holding capacity
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DNA/RNA analysis from soil subsample

1_~:~:)-~ e

=

TTGTGTTATTTTTIACCACA 'Lﬁ CTCGTICCAGTITCA

Primers, bqrcoding, and PCR 1o ATGCTCACGCTGCGIATGCCGIATTTGGGACCTCAA
TTAAATTTCACATITGTTIACTTCACTIGGTICCTGCAR

(]
qmpllfy labelled DNA segmeni‘s AACCCTAACCCIAACCCIAACCCIAACCCIAACCCIA
ACCCTAACCCIAACCCIAACCCIAACCCTAACCCTAL
AGAGTCGCTCCCCGGGTIATTCACATGTICCGCAGCT(
AAACAACGGTCTTTICACACCAGGTTGICCTTTGCARE
P CTGTIAATCAATTTCGCCGTCGCTAACACAATTCTAL
ACCCTAACCCIAACCCIAACCCIAACCCIAACCCIAL
TGGCACAGIARRAGCACAATIACACCGCCATIACAGE
PACCCIAACCCIAACCCIAACCCIAACCCIAACCCTE
PACAAGCTCCAAGTTCCTCAATCGCTTIGGACARATGC

DNA/RNA exiraction Next generation sequencing




Bioinformatics
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Output from metagenomics (barcoding)
and bioinformatics:

1) Identify:
« 10,000s bacterial taxa,
« ~1, 000s fungal taxa, and
« other taxa (e.g, insects, nematodes) within each
sample.

2) Compare relative abundances of taxa among soil
samples:

3) Allows analyses of environmental factors that
influence populations of specific microbes.



Output from soil metatranscriptomics:

1) Identify 10,000s of expressed genes from diverse microbial taxa;

2) Expressed genes can be associated with ecological function
(e.g., pathogenicity, decomposition, symbiosis, antibiosis,
nutrient cycling, etc.);

3) Relative expression of genes can be compared across soil samples.
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Brown root rot disease 1s the result of complex ecological
interactions that make management difficult

Phellinus noxius genetics, biology, ecology

Host tree genetics, biology, ecology

Soil microbial communities (and other biotic environment)

Neighboring vegetation that influences soil microbes

Abiotic environment (e.g., soil temperature, moisture, pH, organic matter,
N, C, cations, texture, water-holding capacity, etc.)

A combination of soil metagenomics/metairanscriptomics with environmental
metadata offers a powerful approach to understand the complex ecological
interactions associated with brown root rot disease, which will help develop
effective disease management strategies.



Application of soil metagenomics for
brown root rot disease

* Allows fimely and precise testing of management treatments on
Phellinus noxius and other soil microbes

» Discover key relationships among biofic/abiotic environment,
Phellinus noxius, and biocontrol agents to develop novel
approaches for disease management.

§1 " Buudg 2811 ‘SAPASI}



Disease-Suppressive Soils

» Crop plants suffer less from specific soil-borne pathogens than
expected owing to the activities of other soil microorganisms

- Metagenomics and culture-dependent functional analyses
identified key taxa and genes involved in suppression of fungal root
pathogens (Mendes et al. 2011. Science)
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